Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Chloroanilino)quinoxaline

Azila Idris, Wan Ainna Mardhiah Wan Saffiee, Zanariah Abdullah, Azahar Ariffin and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 18 November 2008; accepted 19 November 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.058; wR factor = 0.135; data-to-parameter ratio = 16.6.

There are two molecules in the asymmetric unit of the title compound, $C_{14}H_{10}CIN_3$, with dihedral angles of 5.11 (10) and 13.61 (10)° between the aromatic ring systems. In the crystal structure, molecules are linked by $N-H\cdots N$ hydrogen bonds, resulting in chains propagating in [010].

Related literature

For the structure of 2-*N*-(4-chloroanilino)pyridine, see: Fairuz *et al.* (2008).

Experimental

Crystal data $C_{14}H_{10}ClN_3$ $M_r = 255.70$ Orthorhombic, *Pbca* a = 12.155 (1) Å b = 11.238 (1) Å c = 35.421 (3) Å

 $V = 4838.3 (8) Å^{3}$ Z = 16Mo K\alpha radiation $\mu = 0.30 \text{ mm}^{-1}$ T = 100 (2) K $0.30 \times 0.20 \times 0.10 \text{ mm}$ Data collection

```
Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\min} = 0.916, T_{\max} = 0.971
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.135$ S = 1.075495 reflections 331 parameters 2 restraints 25622 measured reflections 5495 independent reflections 4111 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.31\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.28\ e\ \mathring{A}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdots N6$ $N4-H4\cdots N3^{i}$	0.88(1) 0.88(1)	2.24 (1) 2.19 (2)	3.086 (3) 3.010 (3)	160 (3) 155 (3)
	1 1	. ,	. ,	. ,

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank the University of Malaya for supporting this study (grant No. FS 302/2007 C, FS 313/2007 C, FP 067/2006 A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2854).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fairuz, M. Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, 01800.

Sheldrick, G. M. (1996). SADABS. University of Göttigen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2008). E64, o2443 [doi:10.1107/S1600536808038610]

2-(4-Chloroanilino)quinoxaline

A. Idris, W. A. M. Wan Saffiee, Z. Abdullah, A. Ariffin and S. W. Ng

Comment

See the Abstract for details of the title compound, (I), (Fig. 1). See Table 1 for hydrogen bond information. For a related structure, see: Fairuz *et al.* (2008).

Experimental

Chloroquinoxaline (0.33 g, 0.2 mmol) and 4-chloroaniline (0.25 g, 0.2 mmol) were heated at 423–433 K for 5 h. The mixture was cooled and dissolved in water. The solution was extracted with chloroform. The chloroform extract was dried over sodium sulfate and the solvent evaporated. The product was recrystallized from chloroform to yield colourless prisms of (I).

Refinement

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and refined as riding with U(H) = 1.2U(C). The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å.

Figures

Fig. 1. The molecular structure of (I) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2-(4-Chloroanilino)quinoxaline

Crystal data	
C ₁₄ H ₁₀ ClN ₃	$F_{000} = 2112$
$M_r = 255.70$	$D_{\rm x} = 1.404 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 3986 reflections
a = 12.155(1) Å	$\theta = 2.5 - 27.8^{\circ}$
b = 11.238 (1) Å	$\mu = 0.30 \text{ mm}^{-1}$
c = 35.421 (3) Å	T = 100 (2) K
$V = 4838.3 (8) \text{ Å}^3$	Prism, colourless
<i>Z</i> = 16	$0.30\times0.20\times0.10~mm$

Data collection

Bruker SMART APEX CCD diffractometer	5495 independent reflections
Radiation source: fine-focus sealed tube	4111 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.066$
T = 100(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.2^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 15$
$T_{\min} = 0.916, T_{\max} = 0.971$	$k = -14 \rightarrow 14$
25622 measured reflections	$l = -34 \rightarrow 45$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0485P)^2 + 5.0859P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.001$
5495 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
331 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.71730 (5)	0.59065 (6)	0.569356 (19)	0.02492 (17)
Cl2	0.02845 (6)	0.18094 (7)	0.22911 (2)	0.03264 (19)
N1	0.51639 (18)	0.8613 (2)	0.44328 (6)	0.0193 (5)
H1	0.481 (2)	0.813 (2)	0.4277 (7)	0.023*
N2	0.59094 (17)	1.05427 (18)	0.44793 (6)	0.0167 (4)
N3	0.45895 (17)	1.11409 (19)	0.38437 (6)	0.0176 (5)
N4	0.22121 (17)	0.54504 (19)	0.33035 (6)	0.0192 (5)
H4	0.1703 (18)	0.586 (2)	0.3421 (7)	0.023*
N5	0.41121 (17)	0.5347 (2)	0.31927 (6)	0.0198 (5)
N6	0.43633 (18)	0.7150 (2)	0.37487 (6)	0.0216 (5)
C1	0.56706 (19)	0.8032 (2)	0.47383 (7)	0.0171 (5)
C2	0.6235 (2)	0.8609 (2)	0.50277 (7)	0.0174 (5)
H2	0.6304	0.9451	0.5026	0.021*
C3	0.6698 (2)	0.7948 (2)	0.53204 (7)	0.0192 (5)
H3	0.7084	0.8341	0.5518	0.023*

C4	0.6597 (2)	0.6723 (2)	0.53243 (7)	0.0196 (5)	
C5	0.6043 (2)	0.6133 (2)	0.50399 (8)	0.0203 (6)	
Н5	0.5977	0.5290	0.5045	0.024*	
C6	0.5582 (2)	0.6787 (2)	0.47463 (8)	0.0203 (5)	
Н6	0.5204	0.6387	0.4549	0.024*	
C7	0.52621 (19)	0.9770 (2)	0.43137 (7)	0.0166 (5)	
C8	0.4600 (2)	1.0082 (2)	0.39899 (7)	0.0177 (5)	
H8	0.4152	0.9485	0.3879	0.021*	
С9	0.52583 (19)	1.1984 (2)	0.40114 (7)	0.0164 (5)	
C10	0.5304 (2)	1.3140 (2)	0.38633 (7)	0.0198 (5)	
H10	0.4862	1.3348	0.3652	0.024*	
C11	0.5988 (2)	1.3973 (2)	0.40237 (8)	0.0217 (6)	
H11	0.6026	1.4754	0.3922	0.026*	
C12	0.6633 (2)	1.3663 (2)	0.43405 (8)	0.0212 (6)	
H12	0.7101	1.4243	0.4451	0.025*	
C13	0.6594 (2)	1.2541 (2)	0.44907 (8)	0.0205 (6)	
H13	0.7028	1.2350	0.4705	0.025*	
C14	0.59083 (19)	1.1667 (2)	0.43268 (7)	0.0161 (5)	
C15	0.1823 (2)	0.4550 (2)	0.30593 (7)	0.0177 (5)	
C16	0.2491 (2)	0.3811 (2)	0.28402 (8)	0.0247 (6)	
H16	0.3268	0.3891	0.2850	0.030*	
C17	0.2014 (2)	0.2959 (3)	0.26090 (8)	0.0266 (6)	
H17	0.2466	0.2452	0.2461	0.032*	
C18	0.0884 (2)	0.2845 (2)	0.25939 (8)	0.0224 (6)	
C19	0.0212 (2)	0.3556 (2)	0.28118 (7)	0.0191 (5)	
H19	-0.0564	0.3466	0.2802	0.023*	
C20	0.0680 (2)	0.4399 (2)	0.30451 (7)	0.0189 (5)	
H20	0.0221	0.4884	0.3198	0.023*	
C21	0.3268 (2)	0.5814 (2)	0.33713 (7)	0.0183 (5)	
C22	0.3404 (2)	0.6720 (2)	0.36542 (8)	0.0211 (6)	
H22	0.2767	0.7019	0.3778	0.025*	
C23	0.5259 (2)	0.6708 (2)	0.35548 (7)	0.0187 (5)	
C24	0.6321 (2)	0.7168 (2)	0.36303 (8)	0.0249 (6)	
H24	0.6415	0.7777	0.3813	0.030*	
C25	0.7212 (2)	0.6729 (3)	0.34385 (8)	0.0286 (7)	
H25	0.7925	0.7037	0.3489	0.034*	
C26	0.7081 (2)	0.5829 (3)	0.31683 (8)	0.0288 (6)	
H26	0.7707	0.5532	0.3038	0.035*	
C27	0.6061 (2)	0.5372 (2)	0.30895 (8)	0.0236 (6)	
H27	0.5982	0.4760	0.2907	0.028*	
C28	0.5127 (2)	0.5815 (2)	0.32813 (7)	0.0193 (5)	
1411	182	2)			
Atomic displace	ment parameters (A ²)			
	<i>T</i> ¹¹ <i>T</i>	r22 r33	r ¹²	r 13	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0267 (3)	0.0231 (3)	0.0250 (4)	0.0045 (3)	-0.0042 (3)	0.0047 (3)
Cl2	0.0256 (4)	0.0359 (4)	0.0365 (4)	-0.0093 (3)	-0.0007 (3)	-0.0154 (3)
N1	0.0227 (11)	0.0162 (11)	0.0190 (12)	-0.0039 (9)	-0.0045 (9)	0.0001 (9)

supplementary materials

N2	0.0150 (10)	0.0171 (11)	0.0180 (11)	0.0003 (8)	0.0001 (8)	0.0008 (9)
N3	0.0160 (10)	0.0170 (11)	0.0197 (11)	-0.0013 (8)	0.0004 (8)	0.0017 (9)
N4	0.0163 (11)	0.0187 (11)	0.0227 (12)	-0.0025 (9)	0.0027 (9)	-0.0045 (9)
N5	0.0187 (11)	0.0217 (11)	0.0192 (11)	-0.0023 (9)	0.0001 (9)	-0.0026 (9)
N6	0.0236 (11)	0.0203 (12)	0.0208 (12)	-0.0024 (9)	-0.0017 (9)	0.0006 (9)
C1	0.0134 (11)	0.0189 (13)	0.0191 (13)	0.0002 (10)	0.0018 (10)	0.0001 (10)
C2	0.0182 (12)	0.0167 (12)	0.0172 (13)	0.0003 (10)	0.0030 (10)	-0.0011 (10)
C3	0.0179 (12)	0.0215 (13)	0.0184 (13)	0.0011 (10)	0.0011 (10)	-0.0013 (11)
C4	0.0163 (12)	0.0221 (13)	0.0202 (14)	0.0031 (10)	0.0012 (10)	0.0029 (11)
C5	0.0189 (12)	0.0138 (12)	0.0283 (15)	-0.0016 (10)	0.0015 (11)	0.0027 (11)
C6	0.0198 (12)	0.0188 (13)	0.0224 (14)	-0.0029 (10)	-0.0019 (10)	0.0006 (11)
C7	0.0145 (11)	0.0172 (12)	0.0181 (13)	0.0014 (9)	0.0021 (10)	0.0007 (10)
C8	0.0157 (12)	0.0192 (13)	0.0181 (13)	-0.0031 (10)	0.0001 (10)	-0.0026 (10)
C9	0.0119 (11)	0.0192 (13)	0.0180 (13)	0.0007 (10)	0.0011 (9)	-0.0014 (10)
C10	0.0190 (12)	0.0200 (13)	0.0204 (14)	0.0037 (11)	-0.0002 (10)	0.0041 (11)
C11	0.0216 (13)	0.0152 (13)	0.0284 (15)	0.0007 (10)	0.0001 (11)	0.0013 (11)
C12	0.0181 (12)	0.0192 (13)	0.0263 (15)	-0.0015 (10)	-0.0014 (11)	-0.0012 (11)
C13	0.0186 (13)	0.0215 (13)	0.0215 (14)	-0.0013 (10)	-0.0015 (10)	-0.0002 (11)
C14	0.0127 (11)	0.0178 (12)	0.0179 (13)	0.0028 (9)	0.0022 (9)	0.0018 (10)
C15	0.0184 (12)	0.0172 (12)	0.0177 (13)	-0.0017 (10)	-0.0008 (10)	0.0009 (10)
C16	0.0170 (13)	0.0268 (15)	0.0305 (16)	-0.0045 (11)	0.0038 (11)	-0.0055 (12)
C17	0.0215 (14)	0.0270 (15)	0.0312 (16)	-0.0006 (11)	0.0026 (12)	-0.0096 (12)
C18	0.0215 (13)	0.0213 (14)	0.0245 (15)	-0.0053 (10)	-0.0031 (11)	0.0002 (11)
C19	0.0151 (12)	0.0198 (13)	0.0223 (14)	-0.0033 (10)	-0.0013 (10)	0.0033 (11)
C20	0.0185 (12)	0.0205 (13)	0.0178 (13)	0.0006 (10)	0.0013 (10)	0.0023 (10)
C21	0.0195 (12)	0.0147 (12)	0.0207 (14)	-0.0036 (10)	-0.0013 (10)	0.0025 (10)
C22	0.0234 (13)	0.0169 (13)	0.0230 (14)	-0.0003 (11)	0.0011 (11)	-0.0003 (11)
C23	0.0210 (12)	0.0157 (12)	0.0195 (13)	-0.0031 (10)	-0.0032 (10)	0.0028 (10)
C24	0.0279 (15)	0.0190 (14)	0.0278 (16)	-0.0048 (11)	-0.0061 (12)	-0.0003 (12)
C25	0.0199 (13)	0.0343 (16)	0.0316 (16)	-0.0071 (12)	-0.0070 (11)	0.0028 (13)
C26	0.0200 (13)	0.0350 (16)	0.0314 (16)	-0.0005 (12)	0.0002 (12)	0.0007 (13)
C27	0.0213 (13)	0.0250 (14)	0.0244 (15)	-0.0018 (11)	0.0003 (11)	-0.0023 (12)
C28	0.0181 (12)	0.0194 (13)	0.0203 (14)	-0.0018 (10)	-0.0022 (10)	0.0026 (11)

Geometric parameters (Å, °)

Cl1—C4 1.74	745 (3)	C10—C11	1.375 (4)
Cl2—C18 1.74	743 (3)	С10—Н10	0.9500
N1—C7 1.37	373 (3)	C11—C12	1.412 (4)
N1—C1 1.40	406 (3)	C11—H11	0.9500
N1—H1 0.88	383 (10)	C12—C13	1.369 (4)
N2—C7 1.31	310 (3)	C12—H12	0.9500
N2—C14 1.37	374 (3)	C13—C14	1.413 (3)
N3—C8 1.29	297 (3)	С13—Н13	0.9500
N3—C9 1.38	383 (3)	C15—C16	1.397 (4)
N4—C21 1.36	368 (3)	C15—C20	1.400 (3)
N4—C15 1.41	412 (3)	C16—C17	1.387 (4)
N4—H4 0.87	377 (10)	С16—Н16	0.9500
N5—C21 1.31	314 (3)	C17—C18	1.381 (4)

N5—C28	1.377 (3)	C17—H17	0.9500
N6—C22	1.306 (3)	C18—C19	1.379 (4)
N6—C23	1.380 (3)	C19—C20	1.380 (4)
C1—C2	1.394 (4)	С19—Н19	0.9500
C1—C6	1.403 (4)	С20—Н20	0.9500
С2—С3	1.394 (4)	C21—C22	1.438 (4)
С2—Н2	0.9500	С22—Н22	0.9500
C3—C4	1.382 (4)	C23—C28	1.404 (4)
С3—Н3	0.9500	C23—C24	1.415 (4)
C4—C5	1.382 (4)	C24—C25	1.371 (4)
C5—C6	1.391 (4)	C24—H24	0.9500
С5—Н5	0.9500	C25—C26	1.401 (4)
С6—Н6	0.9500	С25—Н25	0.9500
С7—С8	1.444 (3)	C26—C27	1.370 (4)
С8—Н8	0.9500	С26—Н26	0.9500
C9—C10	1.403 (4)	C27—C28	1.413 (4)
C9—C14	1.414 (3)	С27—Н27	0.9500
C7—N1—C1	129.7 (2)	С12—С13—Н13	120.0
C7—N1—H1	115.4 (19)	C14—C13—H13	120.0
C1—N1—H1	114.2 (19)	N2-C14-C9	122.9 (2)
C7—N2—C14	115.6 (2)	N2—C14—C13	118.5 (2)
C8—N3—C9	116.8 (2)	C9—C14—C13	118.6 (2)
C21—N4—C15	129.5 (2)	C16—C15—C20	119.0 (2)
C21—N4—H4	115 (2)	C16—C15—N4	124.9 (2)
C15—N4—H4	116 (2)	C20—C15—N4	116.2 (2)
C21—N5—C28	115.9 (2)	C17—C16—C15	119.7 (2)
C22—N6—C23	116.4 (2)	С17—С16—Н16	120.1
C2—C1—C6	119.1 (2)	C15—C16—H16	120.1
C2—C1—N1	124.4 (2)	C18—C17—C16	120.2 (3)
C6—C1—N1	116.4 (2)	C18—C17—H17	119.9
C1 - C2 - C3	119.8 (2)	C16—C17—H17	119.9
C1—C2—H2	120.1	C19—C18—C17	120.9 (3)
C3—C2—H2	120.1	C19—C18—Cl2	1189(2)
C4-C3-C2	120.2 (2)	C17 - C18 - C12	1201(2)
C4 - C3 - H3	119.9	$C_{18} - C_{19} - C_{20}$	120.1(2) 1193(2)
C_{2} C_{3} H_{3}	119.9	$C_{18} = C_{19} = H_{19}$	119.5 (2)
$C_2 = C_3 = H_3$	119.9 121.0(2)	$C_{10} - C_{10} - H_{10}$	120.4
$C_{3} - C_{4} - C_{11}$	121.0(2) 119.7(2)	$C_{20} = C_{10} = C_{10}$	120.4
$C_5 = C_4 = C_{11}$	119.7(2) 110.3(2)	$C_{10} = C_{20} = C_{13}$	120.7 (2)
C_{4}	119.5(2)	$C_{19} = C_{20} = H_{20}$	119.5
$C_{4} = C_{5} = C_{0}$	119.1 (2)	N5 C21 N4	119.5
C4 = C3 = H5	120.4	$N_{5} = C_{21} = N_{4}$	121.9(2)
	120.4	$N_{3} = C_{21} = C_{22}$	121.9(2)
	120.0 (2)	104 - 0.21 - 0.22	110.2(2)
$C_{1} = C_{0} = D_{0}$	119.0	NG C22 U22	122.9 (2) 119 6
$C_1 \rightarrow C_0 \rightarrow \Pi_0$	119.0	100-0.22-0.22	110.0
$N_2 = C_7 = C_8$	122.9(2)	U21—U22—П22 NG C22 C28	118.0
$IN2 - U/ - U\delta$	122.0(2)	NG-C22-C24	120.7(2)
N1 - C/ - C8	115.2 (2)	Nb-C23-C24	119.6 (2)
N3—C8—C7	123.0 (2)	C28—C23—C24	119.7 (2)

supplementary materials

N3—C8—H8	118.5	C25—C24—C23	119.7 (3)
С7—С8—Н8	118.5	C25—C24—H24	120.1
N3—C9—C10	119.8 (2)	C23—C24—H24	120.1
N3—C9—C14	119.7 (2)	C24—C25—C26	120.5 (3)
C10-C9-C14	120.5 (2)	С24—С25—Н25	119.7
C11—C10—C9	120.0 (2)	С26—С25—Н25	119.7
C11—C10—H10	120.0	C27—C26—C25	120.8 (3)
С9—С10—Н10	120.0	С27—С26—Н26	119.6
C10-C11-C12	119.7 (2)	C25—C26—H26	119.6
C10-C11-H11	120.1	C26—C27—C28	119.8 (3)
C12—C11—H11	120.1	С26—С27—Н27	120.1
C13—C12—C11	121.1 (2)	C28—C27—H27	120.1
C13—C12—H12	119.4	N5-C28-C23	122.2 (2)
C11—C12—H12	119.4	N5-C28-C27	118.4 (2)
C12—C13—C14	120.0 (2)	C23—C28—C27	119.4 (2)
C7—N1—C1—C2	12.7 (4)	C21—N4—C15—C16	2.0 (4)
C7—N1—C1—C6	-167.7 (3)	C21—N4—C15—C20	-178.8 (3)
C6—C1—C2—C3	-0.3 (4)	C20-C15-C16-C17	1.1 (4)
N1—C1—C2—C3	179.3 (2)	N4-C15-C16-C17	-179.7 (3)
C1—C2—C3—C4	-0.1 (4)	C15-C16-C17-C18	0.3 (4)
C2—C3—C4—C5	0.2 (4)	C16—C17—C18—C19	-1.2 (4)
C2—C3—C4—Cl1	-179.64 (19)	C16-C17-C18-Cl2	177.8 (2)
C3—C4—C5—C6	0.0 (4)	C17-C18-C19-C20	0.6 (4)
Cl1—C4—C5—C6	179.86 (19)	Cl2—C18—C19—C20	-178.3 (2)
C4—C5—C6—C1	-0.4 (4)	C18-C19-C20-C15	0.8 (4)
C2—C1—C6—C5	0.5 (4)	C16-C15-C20-C19	-1.6 (4)
N1-C1-C6-C5	-179.1 (2)	N4-C15-C20-C19	179.1 (2)
C14—N2—C7—N1	-179.6 (2)	C28—N5—C21—N4	178.5 (2)
C14—N2—C7—C8	0.6 (3)	C28—N5—C21—C22	-2.7 (4)
C1—N1—C7—N2	1.3 (4)	C15—N4—C21—N5	2.2 (4)
C1—N1—C7—C8	-178.8 (2)	C15—N4—C21—C22	-176.7 (2)
C9—N3—C8—C7	0.5 (4)	C23—N6—C22—C21	1.6 (4)
N2C7C8N3	-0.8 (4)	N5-C21-C22-N6	1.0 (4)
N1—C7—C8—N3	179.4 (2)	N4-C21-C22-N6	179.8 (2)
C8—N3—C9—C10	178.7 (2)	C22—N6—C23—C28	-2.2 (4)
C8—N3—C9—C14	0.0 (3)	C22—N6—C23—C24	177.3 (2)
N3—C9—C10—C11	-178.5 (2)	N6-C23-C24-C25	179.9 (3)
C14—C9—C10—C11	0.3 (4)	C28—C23—C24—C25	-0.6 (4)
C9—C10—C11—C12	-0.8 (4)	C23—C24—C25—C26	0.0 (4)
C10-C11-C12-C13	0.3 (4)	C24—C25—C26—C27	0.2 (4)
C11—C12—C13—C14	0.6 (4)	C25—C26—C27—C28	0.3 (4)
C7—N2—C14—C9	-0.2 (3)	C21—N5—C28—C23	2.1 (4)
C7—N2—C14—C13	-179.6 (2)	C21—N5—C28—C27	-178.1 (2)
N3—C9—C14—N2	-0.1 (4)	N6-C23-C28-N5	0.4 (4)
C10—C9—C14—N2	-178.9 (2)	C24—C23—C28—N5	-179.1 (2)
N3—C9—C14—C13	179.3 (2)	N6—C23—C28—C27	-179.4 (2)
C10—C9—C14—C13	0.6 (4)	C24—C23—C28—C27	1.1 (4)
C12—C13—C14—N2	178.5 (2)	C26—C27—C28—N5	179.3 (3)
C12—C13—C14—C9	-1.0 (4)	C26—C27—C28—C23	-0.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…N6	0.88 (1)	2.24 (1)	3.086 (3)	160 (3)
N4—H4…N3 ⁱ	0.88(1)	2.19 (2)	3.010 (3)	155 (3)
Symmetry codes: (i) $-x+1/2$, $y-1/2$, z.				

